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Perfectly conducting bc

We consider (non-stationary) Maxwell’s equations:

ε∂E∂t − curl H = 0 in Q = Ω×]0,T [,

µ∂H∂t + curl E = 0 in Q,
div(εE ) = div(µH) = 0 in Q,
E × ν = 0, H · ν = 0 on Σ = Γ×]0,T [,
E (0) = E0, H(0) = H0 in Ω,

(1)

where ν denotes the unit outer normal vector on Γ. This means
that we suppose that the time evolution of the electric field E and
magnetic field H is only driven by some initial data.
The bc are called perfectly conducting bc.
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Magnetic boundary condition

Similarly we can consider (non-stationary) Maxwell’s equations:

ε∂E∂t − curl H = 0 in Q = Ω×]0,T [,

µ∂H∂t + curl E = 0 in Q,
div(εE ) = div(µH) = 0 in Q,
H × ν = 0, E · ν = 0 on Σ = Γ×]0,T [,
E (0) = E0, H(0) = H0 in Ω.

(2)

This pb is the adjoint of the previous one once we exchange the
rule of ε and µ.
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Assumptions on the domain and on the coefficients

Ω is a bounded, simply connected domain with a Lipschitz
boundary Γ.
ε and µ are piecewise constant on Lipschitz polyhedral subdomains,
in the sense that we assume that there exists a partition P of Ω in
a finite set of Lipschitz polyhedra Ω1, · · · ,ΩJ such that on each
Ωj , ε = εj and µ = µj , where εj and µj are positive constants.
A Lipschitz polyhedron is a bounded, simply connected Lipschitz
domain with piecewise plane boundary.
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Definitions

H(divε0,Ω) = {χ ∈ L2(Ω)3|div(εχ) = 0},
H0(divε0,Ω) = {χ ∈ H(divε0,Ω)|χ · ν = 0 on Γ},

H(curl,Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3},
H0(curl,Ω) = {χ ∈ H(curl,Ω)|χ× ν = 0 on Γ},

X 0
T (Ω, µ) = H0(divµ0,Ω) ∩ H(curl,Ω),

X 0
N(Ω, ε) = H(divε0,Ω) ∩ H0(curl,Ω).
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Definitions ctd

J?ν (Ω, ε, µ) = {χ ∈ X 0
T (Ω, µ)| curl(ε−1 curlχ) ∈ L2(Ω)3

and curlχ× ν = 0 on Γ},
J?τ (Ω, ε, µ) = {χ ∈ X 0

N(Ω, ε)| curl(µ−1 curlχ) ∈ L2(Ω)3

and curlχ · ν = 0 on Γ}.
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Some properties

Lemma

The space H(divε0,Ω) is equal to the closure in L2(Ω)3 of

X = {ϕ ∈ L2(Ω)3|εϕ ∈ C∞(Ω̄) and div(εϕ) = 0}.

Similarly, the space H0(divε0,Ω) is equal to the closure in L2(Ω)3

of
X̂ = {ϕ ∈ L2(Ω)3|εϕ ∈ D(Ω) and div(εϕ) = 0}.

In [Lagnese 89], the spaces H(div0,Ω) and H0(div0,Ω) are
defined as in this Lemma.

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Pf

Let us first assume that ε = 1. For the first one, let us fix u ∈ H(div0,Ω).
Then by Theorem I.3.4 of [Girault-Raviart, 86], there exists ψ0 ∈ H1(Ω)3 such
that

u = curlψ0.

Since C∞(Ω̄) is dense in H1(Ω), there exists a sequence of ψn ∈ C∞(Ω̄)3 such
that

curlψn → curlψ0 = u in L2(Ω)3, as n→∞.
But curlψn ∈ C∞(Ω̄) and is divergence-free, hence the conclusion.
For an arbitrary ε, we simply use the equivalence

ϕ ∈ H(divε0,Ω)⇔ εϕ ∈ H(div0,Ω).

The second assertion is proved similarly with ψ0 ∈ H1
0 (Ω)3, see Theorem 3.20

of [Amrouche-Bernardi-Dauge-Girault, 98], and using the density of D(Ω) into

H1
0 (Ω).
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Theorem

There exist two positive constants c1, c2 such that

‖χ‖X 0
T (Ω,µ) ≤ c1‖ curlχ‖L2(Ω)3 , ∀χ ∈ X 0

T (Ω, µ), (3)

‖χ‖X 0
N(Ω,ε) ≤ c2‖ curlχ‖L2(Ω)3 , ∀χ ∈ X 0

N(Ω, ε). (4)

Proof: Based on the compact embeddings of X 0
T (Ω, µ) and

X 0
N(Ω, ε) into L2(Ω)3 [Weber, 80].

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions



Outline of the talk
The conservative systems

Functions spaces
Well-posedness

The dissipative system
Density results and consequences

Well-posedness

For further purposes, we need the orthogonal projection Pε on
H(divε0,Ω) in L2(Ω)3, endowed with the inner product

(χ, ϕ)ε =

∫
Ω
εχ · ϕ dx .

Lemma (Le 3)

For any χ ∈ C∞(Ω̄)3, curl(Pεχ) belongs to H(curl,Ω) and satisfies

curl(Pεχ) = curlχ in Ω,

Pεχ× ν = χ× ν on Γ.

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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First take ϕ ∈ D(Ω)3, then∫
Ω

curl(Pεχ) · ϕ =

∫
Ω

(Pεχ) · curlϕ =

∫
Ω
ε(Pεχ) · ε−1 curlϕ.

As ε−1 curlϕ ∈ H(divε0,Ω), we obtain∫
Ω

curl(Pεχ) · ϕ =

∫
Ω
εχ · ε−1 curlϕ =

∫
Ω

curlχ · ϕ.

This proves the first identity.
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Second take ϕ ∈ H1(Ω)3, then by Green’s formula∫
Ω

curl(Pεχ) · ϕ =

∫
Ω

(Pεχ) · curlϕ+ 〈(Pεχ)× ν;ϕ〉.

Again as ε−1 curlϕ ∈ H(divε0,Ω), we obtain∫
Ω

curl(Pεχ) · ϕ =

∫
Ω
εχ · ε−1 curlϕ+ 〈(Pεχ)× ν;ϕ〉.

Again Green’s formula gives∫
Ω

curl(Pεχ) · ϕ =

∫
Ω

curlχ · ϕ− 〈χ× ν;ϕ〉+ 〈(Pεχ)× ν;ϕ〉.

By the first identity we obtain

〈(Pεχ)× ν − χ× ν;ϕ〉 = 0,

and the second identity follows.
Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Corollary

The space X 0
N(Ω, ε) is dense in H(divε0,Ω), while X 0

T (Ω, µ) is
dense in H0(divµ0,Ω).

Proof: As D(Ω) is dense in L2(Ω), the subspace PεD(Ω)3 is
clearly dense in H(divε0,Ω). The first density result is proved
since the inclusion

PεD(Ω)3 ⊂ X 0
N(Ω, ε)

follows from the previous Lemma.
The second density result is similarly proved by considering the
orthogonal projection on H0(divµ0,Ω) wrt the inner product (·, ·)µ.
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A Green formula

Lemma

For all ϕ ∈ H0(curl,Ω) and ψ ∈ H(curl,Ω), we have∫
Ω

curlψ · ϕ dx =

∫
Ω

curlϕ · ψ dx .

Proof: By section I.2.3 of [Girault-Raviart 86], D(Ω)3 is dense in
H0(curl,Ω), hence ∃ϕn ∈ D(Ω)3 s.t.

ϕn → ϕ in H0(curl,Ω).
Standard Green’s formula ⇒∫

Ω curlψ · ϕn dx =
∫

Ω curlϕn · ψ dx .
Taking the limit on n, we arrive at the conclusion.
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The adjoint Maxwell equation

The homogeneous adjoint problem to (1) is

µ∂ϕ∂t − curlψ = 0 in Q,

ε∂ψ∂t + curlϕ = 0 in Q,
div(µϕ) = div(εψ) = 0 in Q,
ϕ× ν = 0, ψ · ν = 0 on Σ,
ϕ(0) = ϕ0, ψ(0) = ψ0 in Ω.

(5)
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First order system

Introduce the Hilbert space

H = H(divµ0,Ω)× H0(divε0,Ω),

equipped with the inner product((
ϕ
ψ

)
,

(
ϕ1

ψ1

))
H

=

∫
Ω
{µϕϕ̄1 + εψψ̄1} dx .

Define the operator A as

D(A) = X 0
N(Ω, µ)× X 0

T (Ω, ε),

A

(
ϕ
ψ

)
=

(
µ−1 curlψ
−ε−1 curlϕ

)
.
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Formally problem (5) is equivalent to{
∂Φ
∂t = AΦ,
Φ(0) = Φ0,

(6)

when Φ =

(
ϕ
ψ

)
and Φ0 =

(
ϕ0

ψ0

)
.
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We shall prove that this problem (6) has a unique solution using
Lumer-Phillips’ theorem:

Theorem

A linear operator A : D(A) ⊂ H → H generates a continuous
semi-group {S(t)}t≥0 of contractions on H if and only if

1 <(Au, u)H ≤ 0, ∀u ∈ D(A),

2 ∃λ > 0, λI −A is surjective.

Recall that a family of continuous linear operators {S(t)}t≥0 is
called a continuous semi-group of contractions if and only if

1 S(0) = Id ,
2 S(t)S(s) = S(t + s),∀s, t ≥ 0,
3 t → S(t)x is continuous from [0,∞)→ H for all x ∈ H,
4 ‖S(t)‖L(H) ≤ 1,∀t ≥ 0.

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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The main properties of {S(t)}t≥0 are that for all x ∈ D(A), the
mapping

t → S(t)x ,

is differentiable in [0,∞) and

d

dt
S(t)x = AS(t)x .

Hence u defined by

u(t) = S(t)x , ∀t ≥ 0,

satisfies {
du
dt = Au in H,
u(0) = x .

(7)

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Maximality

Lemma

A and −A are maximal dissipative operators.

Proof: 1. Dissipativeness of ±A:

<(AΦ,Φ)H = 0,∀Φ ∈ D(A). (8)

With the above notation we have

(AΦ,Φ)H =

∫
Ω
{curlψ · ϕ̄− curlϕ · ψ̄} dx .

Green’s formula (since ψ,ϕ ∈ H0(curl,Ω)) ⇒∫
Ω curlψ · ϕ̄ dx =

∫
Ω curlϕ · ψ̄ dx .

The real part of this identity yields (8).
Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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2. Maximality: This means that for all (f , g)> in H, we are
looking for (ϕ,ψ)> in D(A) such that

(I ± A) (ϕ,ψ)> = (f , g)> .

Equivalently, we have

ψ = g ± ε−1 curlϕ,

and
ϕ+ µ−1 curl(ε−1 curlϕ) = f ∓ µ−1 curl g .

This last problem has a unique sol. ϕ in X 0
N(Ω, µ) because its

variational formulation is∫
Ω
{ε−1 curlϕ curl θ̄+µϕθ̄} dx =

∫
Ω
{µf θ̄∓g curl θ̄} dx ,∀θ ∈ X 0

N(Ω, µ).

Existence and uniqueness by Lax-Milgram lemma.
Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Lumer-Phillips’ theorem ⇒ A generates a C0-group of contractions
T (t). Therefore we have the following existence result.

Theorem

For all Φ0 ∈ H, the problem (6) has a weak solution
Φ ∈ C ([0,∞),H) given by Φ = T (t)Φ0.
If moreover Φ0 ∈ D(Ak), with k ∈ N∗, the problem (6) has a
strong solution Φ ∈ C ([0,∞),D(Ak)) ∩ C 1([0,∞),D(Ak−1)).

Remark

If k = 1 or 2, we recover the results from [Lagnese 89] because
D(A2) = J?τ (Ω, µ, ε)× J?ν (Ω, µ, ε).

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Energies

Lemma

If Φ =

(
ϕ
ψ

)
is a weak solution of problem (6) (or equivalently

(5)), define the energy at time t by

E (t) =
1

2

∫
Ω
{µ|ϕ(x , t)|2 + ε|ψ(x , t)|2} dx .

Then we have
E (t) = E (0),∀t ≥ 0. (9)

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Proof: Since D(A) is dense in H it suffices to prove (9) for(
ϕ0

ψ0

)
in D(A). For such a initial datum, ϕ and ψ are

differentiable and therefore

d

dt
E (t) = <

∫
Ω
{µ∂ϕ

∂t
ϕ̄+ ε

∂ψ

∂t
ψ̄} dx

= <
∫

Ω
{curlψϕ̄− curlϕψ̄} dx

= <(A

(
ϕ
ψ

)
,

(
ϕ
ψ

)
)H = 0,

due to (8).
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Lemma

If Φ =

(
ϕ
ψ

)
is a strong solution of problem (6) (or equivalently

(5)) with initial datum in D(A), define the modified energy at time
t by

Ẽ (t) =
1

2

∫
Ω
{µ−1| curlψ(x , t)|2 + ε−1| curlϕ(x , t)|2} dx .

Then we have
Ẽ (t) = Ẽ (0),∀t ≥ 0. (10)

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Proof: Since D(A2) is dense in D(A) it suffices to prove (10) for(
ϕ0

ψ0

)
in D(A2).

For such a initial datum, ϕ and ψ are C 2 in time, and
(ϕt , ψt)

> ∈ D(A). Furthermore
Ẽ (t) = 1

2

∫
Ω{µ|ϕt(x , t)|2 + ε|ψt(x , t)|2} dx .

Hence the same calculations as before yield

d

dt
Ẽ (t) = <(A

(
ϕt

ψt

)
,

(
ϕt

ψt

)
)H = 0,

due to (8).
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Silver-Müller bc

We consider (non-stationary) Maxwell’s equations:

ε∂E∂t − curl H = 0 in Q = Ω×]0,+∞[,

µ∂H∂t + curl E = 0 in Q,
div(εE ) = div(µH) = 0 in Q,
H × ν + (E × ν)× ν = 0 on Σ := Γ×]0,+∞[,
E (0) = E0, H(0) = H0 in Ω,

(11)

where ν denotes the unit outer normal vector on Γ. This means
that we suppose that the time evolution of the electric field E and
the magnetic field H is driven by a damping on Γ.
The boundary condition is the so-called Silver-Müller boundary
condition.
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First order system

Introduce the Hilbert space

H = H(divε0,Ω)× H(divµ0,Ω),

equipped with the inner product(
(ϕ,ψ)> , (ϕ1, ψ1)>

)
H

=

∫
Ω
{εϕϕ̄1 + µψψ̄1} dx .

Define the operator A as

D(A) = {(E ,H)> ∈ H| curl E , curl H ∈ L2(Ω)3;

E × ν,H × ν ∈ L2(Γ)3 satisfying

H × ν + (E × ν)× ν = 0 on Γ}, (12)

A (E ,H)> =
(
ε−1 curl H,−µ−1 curl E

)>
, ∀ (E ,H)> ∈ D(A).

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Formally problem (11) is equivalent to{
∂Φ
∂t = AΦ,
Φ(0) = Φ0,

(13)

when Φ =

(
ϕ
ψ

)
and Φ0 =

(
ϕ0

ψ0

)
.
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A density result

Recall the next density result from [Ben
Belgacem-Bernardi-Costabel-Dauge, 97]

Theorem

Introduce the Hilbert space

W = {E ∈ L2(Ω)3| curl E ∈ L2(Ω)3 and E × ν ∈ L2(Γ)3}, (14)

with the norm

||E ||2W =

∫
Ω

(|E |2 + | curl E |2)dx +

∫
Γ
|E × ν|2dσ.

Then H1(Ω)3 is dense in W .

This thm allows some integration by parts:Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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An ibp formula

Lemma

For all

(
E
H

)
∈ D(A), one has

∫
Ω

(curl E · H − curl H · E ) dx =

∫
Γ

H × ν · Edσ. (15)

Proof: We first remark that (15) holds for all

(
E
H

)
in

H1(Ω)3 × H1(Ω)3 owing to Green’s formula. By density (see the
previous Theorem) it still holds in W ×W . We conclude since
D(A) is clearly continuously embedded into W ×W .
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Another density result

We next prove the following density result, which is closely related
to Lemma 1.

Lemma

The domain of the operator A is dense in H.

Proof: Recall that Pε is the projection on H(divε0,Ω) in L2(Ω)3

endowed with the inner product (·, ·)ε. As D(Ω)3 is dense in
L2(Ω)3, PεD(Ω)3 is dense in H(divε0,Ω). Consequently
PεD(Ω)3 × PµD(Ω)3 is dense in H = H(divε0,Ω)× H(divµ0,Ω).

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Moreover by Lemma 1 for any χ ∈ D(Ω)3, we have

curl(Pεχ) = curlχ in Ω,

Pεχ× ν = 0 on Γ.

We then conclude that

PεD(Ω)3 × PµD(Ω)3 ⊂ D(A).

Therefore the above density result implies that D(A) is dense in H.

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions
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Dissipativeness

Lemma

A is a dissipative operator.

Proof: Dissipativeness of A⇔

<(AΦ,Φ)H ≤ 0,∀Φ ∈ D(A).

With the notation Φ = (E ,H)>, we have
(AΦ,Φ)H =

∫
Ω
{curlHĒ − curlEH̄} dx .

Green’s formula (see (15)) ⇒
(AΦ,Φ)H =

∫
Γ
H̄ × ν · Edσ.

Using the boundary condition (12), we arrive at

(AΦ,Φ)H = −
∫

Γ

|E × ν|2dσ.

Serge NICAISE Existence results for the heterogeneous Maxwell equations with different boundary conditions



Outline of the talk
The conservative systems

Functions spaces
Well-posedness

The dissipative system
Density results and consequences

Well-posedness

Maximality

Lemma

A is maximal .

Corollary

The domain of the operator A is dense in H.
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Pf

For all

(
F
G

)
in H, we are looking for

(
E
H

)
in D(A) such that

(I + A)

(
E
H

)
=

(
F
G

)
. (16)

Formally, we then have
H = G − µ−1 curlE , (17)

and
εE + curl(µ−1 curlE) = εF + curlG . (18)

This last equation in E will have a unique solution by adding a boundary
condition on E . Indeed using the identity (17), we see that (12) is formally
equivalent to

− µ−1 curlE × ν + (E × ν)× ν = −G × ν on Γ. (19)
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The variational formulation of problem (18)-(19): Find E ∈Wε such that

a(E ,E ′) =

∫
Ω

{εF · E ′ + G · curlE ′} dx , ∀E ′ ∈Wε, (20)

where the Hilbert space Wε is defined by

Wε = {E ∈ L2(Ω)3| curlE ∈ L2(Ω)3, div(εE) ∈ L2(Ω) and E × ν ∈ L2(Γ)3},

with the norm

||E ||2Wε
=

∫
Ω

(|E |2 + | curlE |2 + | div(εE)|2)dx +

∫
Γ

|E × ν|2dσ.

and the form a is defined by

a(E ,E ′) =

∫
Ω

{µ−1 curlE · curlE ′ + εE · E ′ + s div(εE) div(εE ′)} dx

+

∫
Γ

(E × ν) · E ′ × ν dσ,

s > 0 being a parameter appropriately chosen later on.
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As

a(E ,E) =

∫
Ω

{µ−1| curlE |2 + ε|E |2 + s|div(εE)|2} dx +

∫
Γ+

|E × ν|2 dσ,

the sesquilinear form a is coercive on Wε and by Lax-Milgram lemma, there
exists a unique sol. E ∈Wε of (20).
At this stage we need to show that this solution E ∈Wε of (20) and H given

by (17) are such that the pair

(
E
H

)
belongs to D(A) and satisfies (16).
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We first show that εE is divergence free: Take test functions E ′ = ∇φ with
φ ∈ D(∆Dir

ε ), where D(∆Dir
ε ) is the domain of the operator ∆Dir

ε with Dirichlet
boundary conditions defined by

D(∆Dir
ε ) = {φ ∈ H1

0 (Ω)|∆εφ := div(ε∇φ) ∈ L2(Ω)},
∆Dir

ε φ = ∆εφ, ∀φ ∈ D(∆Dir
ε ).

In that case (20) becomes (the boundary term disappears since φ is zero on Γ)∫
Ω

{εE · ∇φ+ s div(εE)∆εφ} dx =

∫
Ω

εF · ∇φ dx , ∀φ ∈ D(∆Dir
ε ).

Since εE and εF have a divergence in L2(Ω), by Green’s formula in the above
left-hand side and right-hand side (allowed since φ is in H1(Ω)), we obtain∫

Ω

div(εE){φ+ s∆εφ} dx = 0, ∀φ ∈ D(∆Dir
ε ),

since εF is divergence free. Taking s > 0 such that −s−1 is not an eigenvalue
of ∆Dir

ε (always possible since ∆Dir
ε is a negative selfadjoint operator with a

discrete spectrum), we conclude that

div(εE) = 0 in Ω.
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Using this fact and the identity (17), we see that (20) is equivalent to∫
Ω

{εE · E ′ − H · curlE ′} dx +

∫
Γ

(E × ν) · E ′ × ν dσ

=

∫
Ω

εF · E ′ dx , ∀E ′ ∈Wε.

Taking first test functions E ′ = Pεχ with χ ∈ D(Ω)3 by Lemma 16 we get

εE − curlH = εF in D′(Ω).

This means that the first identity in (16) holds since the above identity yields
curlH ∈ L2(Ω).
Now taking test functions E ′ = Pεχ with χ ∈ C∞(Ω̄)3 by Lemma 3 and
Green’s formula (see (15)), we get the BC:

H × ν + (E × ν)× ν = 0 on Γ.

Finally from (17) and the fact that µG is divergence free, µH is also divergence

free.
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Lumer-Phillips’ theorem ⇒ A generates a C0-group of contractions
(T (t))t≥0. Therefore we have the following existence result.

Theorem

For all

(
E0

H0

)
∈ H, the problem (11) admits a unique (weak)

solution

(
E
H

)
∈ C (R+,H). If moreover

(
E0

H0

)
∈ D(A), the

problem (11) admits a unique (strong) solution(
E
H

)
∈ C 1(R+,H) ∩ C (R+,D(A)).
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